Search results for "Hurwitz spaces"
showing 10 items of 11 documents
Irreducible components of Hurwitz spaces of coverings with two special fibers
2013
In this paper we prove new results of irreducibility for Hurwitz spaces of coverings whose monodromy group is a Weyl group of type B_d and whose local monodromies are all reflections except two.
On Hurwitz spaces of coverings with one special fiber
2009
Let X X' Y be a covering of smooth, projective complex curves such that p is a degree 2 etale covering and f is a degree d covering, with monodromy group Sd, branched in n + 1 points one of which is a special point whose local monodromy has cycle type given by the partition e = (e1,...,er) of d. We study such coverings whose monodromy group is either W(Bd) or wN(W(Bd))(G1)w-1 for some w in W(Bd), where W(Bd) is the Weyl group of type Bd, G1 is the subgroup of W(Bd) generated by reflections with respect to the long roots ei - ej and N(W(Bd))(G1) is the normalizer of G1. We prove that in both cases the corresponding Hurwitz spaces are not connected and hence are not irreducible. In fact, we s…
Hurwitz spaces of triple coverings of elliptic curves and moduli spaces of abelian threefolds
2002
We prove that the moduli spaces A_3(D) of polarized abelian threefolds with polarizations of types D=(1,1,2), (1,2,2), (1,1,3) or (1,3,3) are unirational. The result is based on the study of families of simple coverings of elliptic curves of degree 2 or 3 and on the study of the corresponding period mappings associated with holomorphic differentials with trace 0. In particular we prove the unirationality of the Hurwitz space H_{3,A}(Y) which parameterizes simply branched triple coverings of an elliptic curve Y with determinants of the Tschirnhausen modules isomorphic to A^{-1}.
Irreducibility of Hurwitz spaces of coverings with one special fiber and monodromy group a Weyl group of type D d
2007
Let Y be a smooth, connected, projective complex curve. In this paper, we study the Hurwitz spaces which parameterize branched coverings of Y whose monodromy group is a Weyl group of type D d and whose local monodromies are all reflections except one. We prove the irreducibility of these spaces when $$Y \simeq \mathbb {P}^{1}$$ and successively we extend the result to curves of genus g ≥ 1.
On the irreducibility of Hurwitz spaces of coverings with an arbitrary number of special points
2013
In this paper we study Hurwitz spaces of coverings of Y with an arbitrary number of special points and with monodromy group a Weyl group of type D_d, where Y is a smooth, complex projective curve. We give conditions for which these spaces are irreducible.
Hurwitz spaces of coverings with two special fibers and monodromy group a Weyl group of typeBd
2012
f! Y; where is a degree-two coverings with n1 branch points and branch locus D and f is a degree-d coverings with n2 points of simple branching and two special points whose local monodromy is given by e and q, respectively. Furthermore the covering f has monodromy group Sd and f. D /\ D fD? where D f denotes the branch locus of f . We prove that the corresponding Hurwitz spaces are irreducible under the hypothesis n2 s r dC 1.
Corrigendum: Unirationality of Hurwitz Spaces of Coverings of Degree ≤5
2017
We correct Proposition 3.12 and Lemma 3.13 of the paper published in Vol. 2013, No.13, pp.3006-3052. The corrections do not affect the other statements of the paper. In this note, we correct a flow in the statement of Proposition 3.12 of [1] which also leads to a modification in the statement of Lemma 3.13 of [1]. We recall that in this proposition one considers morphisms of schemes X ?→π Y ?→q S, where q is proper, flat, with equidimensional fibers of dimension n and π is finite, flat and surjective. Imposing certain conditions on the fibers it is claimed that the loci of s € S fulfilling these conditions are open subsets of S. A missing condition should be added and the correct version of…
MR 3007673 Reviewed Geiss F. The Unirationality of Hurwitz spaces of 6-gonal curves of small genus. Documenta Mathematica (2012) 17, 627--640. (Revie…
2013
Let H (d, w) be the Hurwitz space that parametrizes degree d simple coverings of the projective line with w = 2g + 2d - 2 branch points. A classic result affirms the unirationality of these spaces for d \leq 3. Successively, Arbarello and Cornalba in [E. Arbarello and M. Cornalba, Footnotes to a paper of Beniamino Segre, Math. Ann. 256 (1981), 341--362] prove that the spaces H (d, w) are unirational in the following cases: d \leq 5 and g \geq d - 1, d = 6 and 5 \leq g \leq 10 or g = 12 and d = 7 and g = 7. In this paper, the author studies the problem of unirationality over an algebraically closed field of characteristic zero when d = 6. In particular, the author proves that the spaces H (6…
Hurwitz spaces of quadruple coverings of elliptic curves and the moduli space of abelian threefolds A_3(1,1,4)
2005
We prove that the moduli space A_3(1,1,4) of polarized abelian threefolds with polarization of type (1,1,4) is unirational. By a result of Birkenhake and Lange this implies the unirationality of the isomorphic moduli space A_3(1,4,4). The result is based on the study the Hurwitz space H_{4,n}(Y) of quadruple coverings of an elliptic curve Y simply branched in n points. We prove the unirationality of its codimension one subvariety H^{0}_{4,A}(Y) which parametrizes quadruple coverings ��:X --> Y with Tschirnhausen modules isomorphic to A^{-1}, where A\in Pic^{n/2}Y, and for which ��^*:J(Y)--> J(X) is injective. This is an analog of the result of Arbarello and Cornalba that the Hurwitz s…